www.isi.ac

ISI Journals

[International Scientific Indexing]

[Institute for Scientific Information]

[P-ISSN: 2413-5100] & [E-ISSN: 2413-5119]

Hybrid nanostructures consisting of as grown graphene & copper nanoparticles have been developed to improve the intensity and stability of surface plasmon resonance

Open PDF in Browser
International Journal of Basis Applied Science and Study, 2022

Autour(s)

  • Kubura Motalo, Lolade Nojeem, Joe Ewani, Atora Opuiyo, Ibrina Browndi

Abstract

The transfer-free fabrication of the high quality graphene on the metallic nanostructures, which is highly desirable for device applications, remains a challenge. Here, we develop the transfer-free method by direct chemical vapor deposition of the graphene layers on copper (Cu) nanoparticles (NPs) to realize the hybrid nanostructures. The graphene as-grown on the Cu NPs permits full electric contact and strong interactions, which results in a strong localization of the eld at the graphene/copper interface. An enhanced intensity of the localized surface plasmon resonances (LSPRs) supported by the hybrid nanostructures can be obtained, which induces a much enhanced unresent intensity from the dye coated hybrid nanostructures. Moreover, the graphene sheets covering completely and uniformly on the Cu NPs act as a passivation layer to protect the underlying metal surface from air oxidation. As a result, the stability of the LSPRs for the hybrid nanostructures is much enhanced compared to that of the bare Cu NPs. The transfer-free hybrid nanostructures with enhanced intensity and stability of the LSPRs will enable their much broader applications in photonics and optoelectronics.

About ISI Journals: ISI Journals are devoted to the rapid worldwide dissemination of research and is composed of a number of specialized research networks.

Special thanks to:

[Science Direct, Elsevier, Springer, SAGE Publications, EBSCOHost, Oxford University Press, CRC Press, Cambridge University Press, Pearson Education, Wolters Kluwer, Cengage, McGraw Hill, Hodder & Stoughton, Macmillan Learning, Scholastic, IEEE Standards Association, Association for Computing Machinery, American National Standards Institute, American Society of Mechanical Engineers, NFPA, American Society of Civil Engineers, ASTM International, Brazilian National Standards Organization, Emerald, Taylor & Francis, Wiley, ProQuest, JSTOR, Springer Nature]

Powered by ISI Journals (International Scientific Indexing & Institute for Scientific Information)